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Gap function in the finite Bak-Sneppen model
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We present several analytical results on the average lifetime of supercritical avalanches and the long-term
behavior of the gap function in the finite Bak-Sneppen model.
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I. INTRODUCTION interval is needed(2) For the sake of simulations of the
model and its gap function, one has to deal with finite system
Since the first observation of self-organized criticality sizesL. In doing so, we can readily observe that the gap
(SOQ by Bak, Tang, and Wiesenfe[d], i.e., the occurrence functionG(t) exceeds the critical valuk, after a sufficiently
of critical behavior without the necessity of fine tuning of an large time rather than approaching a stationary limit.
external parameter, there has been vast interest in this field In this paper we quantify the behavior of the gap function
[2]. The reason is that SOC provides the only known mechafor the finite Bak-Sneppen model, when the gap is larger
nism so far to generate spatiotemporal complexity, which ighan f., and show in particular that the finite system size
ubiquitous in Nature. SOC has been observed in a number diimits the applicability of the gap function for describing the
open dynamical complex systems in the macroscopic worldself-organization process to times shorter than a characteris-
such as sandpiles, earthquakes, the stock market, and eviémtime scale defined by the system size. In Sec. Il we cal-
the system of species on earth undergoing evolytidnRe-  culate the average avalanche lifetime in the case of a finite
cently it has been observég@8] that SOC also exists at the Bak-Sneppen model and compare this with numerical calcu-
microsopic level of matter—at the level of gluons andlations. In Sec. Il we discuss the consequences of the results
guarks—namely, in systems of interacting soft gluons. obtained for the description of the system in terms of the gap
Even though there is great interest, a general mathematitinction.
cal formalism for the description of SOC does not yet exist.
For this reason self-organized cr_iticality is very (_)ften studied Il. AVERAGE F, AVALANCHE SIZE FOR F,>F,
in terms of cellular automata, which take the main features of
the real system into account. An example is the Bak-Sneppen In the Bak-Sneppen model for a given valuel <1
model [4] for biological evolution, which is defined as fol- one define$5] an f, avalanche as the activity between suc-
lows [4]. On ad-dimensional lattice with lengtlh. random  cessive points in time when all random numbers are larger
numbers(called fitness uniformly distributed in (0,1) are thanf,. The lifetime (also called sizg5]) of such an ava-
assigned to each cell. At every time step the global minimuntanche is defined as the number of time steps between those
fitness is detected and together with its nearest neighbogsoints in time. When the lifetime distribution exhibits power-
replaced by new random numbers from (0,1). The all-timdaw behavior, the average lifetime diverges. The average
maximumG of the minimum fitness increases with time. It is avalanche lifetime is a function of the arbitrary paranftgr
called the gap5]. When the gap jumps to a larger valadl, It has been found5] that in the thermodynamic limit the
random numbers are uniformly distributed above this gaplivergence is like {.—fo) ™7 (for fo<f.), wherey is a criti-
[5,6]. These points in time are separated by local activitycal exponent.
called avalanches, where some of the random numbers are However, for finite systems this fails in the near neigh-
smaller than the gap. In the thermodynamic limit-¢«),  borhood off.. This can be understood because larger
the gap increases up to a critical valiygewhere the distribu- averagée avalanches cover the whole system so that ava-
tion of the avalanches exhibits a power-law behavior indicatianches that would have lasted much longer in a larger sys-
ing the occurrence of self-organized criticality in the systemtem, are now finished much more quickly. As a consequence
In an attempt to understand the self-organization processhe average avalanche size fgt=f. does not diverge but
it has been show5] that the evolution of the system is takes a finite value. Nevertheless,fagsends to 1, the aver-
governed by avalanche dynamics and that this can be dege diverges. This divergence can be readily calculated by
scribed in terms of an exact equation, namely, the gap equarsing Eq.(16) from [5]:
tion, which tries to reflect the approach to the self-organized
critical state[5]. It has been pointed out in particular that as din(T)s (Neow)s
the gapG(t) approaches the critical valufe with ongoing 0= e
time t the system reaches a stationary state wli€(t)/dt dfo 1-fo
=0 (in the limit of infinite sizeL). At this point we would
like to stress two factg1) For infinite systems the gap func- Where(nc,)r, denotes the average number of cells covered
tion is always a constant in time, because in order to increaday f, avalanchesi.e., the number of cells that changed their
the gapall (infinitely many random numbers have to rise fitness at least once during the course of the avalgrehe
above that larger value, for which an infinitely long time (T>fo is their average size. This equation is valid for all
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FIG. 2. Average avalanche size as functiorLdbr differentf,
FIG. 1. Average avalanche size as function of fl for differ- in the one- and two-dimensional Bak-Sneppen model. Onlf at

ent system sizes in the onépen circles and squadeand two-  does full power-law behavidrE occur.

dimensional(solid squares Bak-Sneppen model. The dotted and

dashed lines indicate the critical values-1; in each case. The numerical calculations for different system sizes and dimen-
solid lines correspond te-(1— fo)*Ld. sions of the Bak-Sneppen model are shown together with the

results of Eq(3).
models[5] of the Bak-Sneppen type independent of their Itis interesting to consider the average avalanche lifetime

dimension and independent of the valuef gf Suppose, is  at fixed f, (especially atf;) for different system sizes,
sufficiently large, such tha{T); is large. Then the ava- because the power-law behavior of the lifetime distributions
0

at f.. is restricted by a cutoff due to the finite system size.
Hence, studying the average lifetimefatas a function oL

d yields information about the dependence of this cutoff on the
<”cov>fo: L™ 2 system size. We find through numerical calculations that

lanches cover on average all the cells in the system, i.e.,

1 E
Inserting this into Eq(1) and solving this equation leads to <T>fc L @
_d with E=2.30=0.01 for the one-E=2.26=0.03 for the
<T>fo~(1_f0) : ) two-, and E=2.31+-0.06 for the three-dimensional Bak-
Sneppen moddlsee Fig. 2. Within the accuracy of the cal-
This means that the average avalanche size divergég at culation, the value of is the same in all three dimensions.
=1 for every finite system. This divergence is not of the For the random-neighbor version of this model it was found
" . . 0.5
same interesting dynamical type as thaf afor the infinite ~ @nalytically[7] that the average grows with™”. .
system as can be readily seen. Consider a sufficiently long FOr values offo below f. the average tends to a finite
time interval such that manf;, avalanches occur. Then on Mit, namely, its value at =<. At f, the full power-law

the average at 1 out dfT); points in time all of the cells behavior of.Eq(4) is observed, while for larger values &f
0 other functional dependence occurs. Equati@h can be

readily understood if one assumes that the probability distri-
bution PfC(T) of the avalanche lifetime dt, exhibits power-

law behavior with a cutoff dependent an

have fitnesses abovig. If at every time step new random
numbers were assigned to alf' cells in the system, the

probability for this to happen would be 61f0)'-d. Thus we
have 1(T>fo=(1—fO)Ld, and hence a behavior as in E§)

aside from the proportionality constant. We interpret this to PfC(T)~T*Tg(TL1’E), (5)
mean that forfy close to 1 only random behavior of the
system survives. where € is an (model-dependeptexponent describing the

We can summarize the dependence of the average avautoff, 7 is the exponent of the power law of the lifetime
lanche lifetime onf, in the finite Bak-Sneppen model as distribution, andg(x) is a scaling function, which decays
follows. Forfo smaller thenf the averaggT); is propor-  rapidly whenx is large, and tends to a constant for-0.
tional to (f.— fo) ~”. For f, larger thanf . the dependence is Calculating the average gives
like (1—f0)‘Ld. In the near neighborhood df, there is a (2—7)le
transition between these two regimes. In Fig. 1 the results of <T>fc”|- ' (6)
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which is the observed power-law behavior with=(2
—1)/e (see Fig. 2 r=1.07 andr=1.245[5] for the one-
and two-dimensional Bak-Sneppen model, respectively. That
is, €=0.40 in one ank=0.33 in two dimensions. It is in-
teresting to see that, althoughtand e depend on the dimen-
sion of the modelE=(2— 7)/e seems not to.

Ill. EVOLUTION OF THE GAP AT LARGE TIMES
IN FINITE SYSTEMS

= L=1000

With the help of Eq(3) we are now able to calculate the O L=50
long-term behavior of the gap functidd(t) using the gap L o L=10
equation[5], which is valid independent of the value of the
gap:

L=5

0.01
dt  LYT)g t
Defining F(t)=1-G(t) and using Eq.(3) this equation FIG. 3. The difference of the current gap(t) from 1 as a

function of timet for different system sizes in the one-dimensional
Bak-Sneppen model. The horizontal dotted line indicatesf L

The solid lines representté(Ld dependence as described in the text.

reads

dF(t) F(t)

=— . 8 - . . N
dt LdF(t)—Ld ® the finite system sizé& also sets a finite “system size” in

time, and that considering gap values abdyeneeds time
By separating the variables and integrating this equation, igcales larger than this.
follows that

IV. CONCLUSIONS

_ —1nd
F()=1-G(t)~t © We have shown analytically how the average lifetime de-

. - , pends onf, and how the gap function in the Bak-Sneppen
for sufficiently larget and for every(finite) L. In Fig. 3@ o\5/ution model behaves after long time intervals and com-
comparison with numerical calculations is shown. It can alsg,5req hoth results successfully to numerical calculations. We
be seen(especially for large systemshat before entering qpserve that the average lifetimefatis proportional toLE,

this regime(i.e., before the gap has rfﬁcrlﬁnf‘)‘ the behavior \hereE is an exponent that is apparently independent of the
of the gap function is likéf.— G(t)~t~ "1 as calculated  gimension of the model.

in [5,6] from the average lifetime fof, avalanches with
fo<f. by using the gap equation. At the gap function does
not reach a stationary value. From the dynamical point of
view it is then no longer meaningful to follow its evolution | wish to thank F. J. A. Golcher, T. Meng, and R. Rittel
any further. This can be readily understood by recalling thafor helpful discussions.
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