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Gap function in the finite Bak-Sneppen model
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We present several analytical results on the average lifetime of supercritical avalanches and the long-term
behavior of the gap function in the finite Bak-Sneppen model.
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I. INTRODUCTION

Since the first observation of self-organized critical
~SOC! by Bak, Tang, and Wiesenfeld@1#, i.e., the occurrence
of critical behavior without the necessity of fine tuning of
external parameter, there has been vast interest in this
@2#. The reason is that SOC provides the only known mec
nism so far to generate spatiotemporal complexity, which
ubiquitous in Nature. SOC has been observed in a numbe
open dynamical complex systems in the macroscopic wo
such as sandpiles, earthquakes, the stock market, and
the system of species on earth undergoing evolution@2#. Re-
cently it has been observed@3# that SOC also exists at th
microsopic level of matter—at the level of gluons a
quarks—namely, in systems of interacting soft gluons.

Even though there is great interest, a general mathem
cal formalism for the description of SOC does not yet ex
For this reason self-organized criticality is very often stud
in terms of cellular automata, which take the main feature
the real system into account. An example is the Bak-Snep
model @4# for biological evolution, which is defined as fo
lows @4#. On a d-dimensional lattice with lengthL random
numbers~called fitness! uniformly distributed in (0,1) are
assigned to each cell. At every time step the global minim
fitness is detected and together with its nearest neigh
replaced by new random numbers from (0,1). The all-ti
maximumG of the minimum fitness increases with time. It
called the gap@5#. When the gap jumps to a larger value,all
random numbers are uniformly distributed above this g
@5,6#. These points in time are separated by local activ
called avalanches, where some of the random numbers
smaller than the gap. In the thermodynamic limit (L→`),
the gap increases up to a critical valuef c where the distribu-
tion of the avalanches exhibits a power-law behavior indic
ing the occurrence of self-organized criticality in the syste

In an attempt to understand the self-organization proc
it has been shown@5# that the evolution of the system i
governed by avalanche dynamics and that this can be
scribed in terms of an exact equation, namely, the gap e
tion, which tries to reflect the approach to the self-organiz
critical state@5#. It has been pointed out in particular that
the gapG(t) approaches the critical valuef c with ongoing
time t the system reaches a stationary state withdG(t)/dt
50 ~in the limit of infinite sizeL). At this point we would
like to stress two facts.~1! For infinite systems the gap func
tion is always a constant in time, because in order to incre
the gapall ~infinitely many! random numbers have to ris
above that larger value, for which an infinitely long tim
1063-651X/2001/63~4!/047101~3!/$20.00 63 0471
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interval is needed.~2! For the sake of simulations of th
model and its gap function, one has to deal with finite syst
sizesL. In doing so, we can readily observe that the g
functionG(t) exceeds the critical valuef c after a sufficiently
large time rather than approaching a stationary limit.

In this paper we quantify the behavior of the gap functi
for the finite Bak-Sneppen model, when the gap is lar
than f c , and show in particular that the finite system si
limits the applicability of the gap function for describing th
self-organization process to times shorter than a charact
tic time scale defined by the system size. In Sec. II we c
culate the average avalanche lifetime in the case of a fi
Bak-Sneppen model and compare this with numerical ca
lations. In Sec. III we discuss the consequences of the res
obtained for the description of the system in terms of the g
function.

II. AVERAGE F 0 AVALANCHE SIZE FOR F 0ÌF c

In the Bak-Sneppen model for a given value 0, f 0,1
one defines@5# an f 0 avalanche as the activity between su
cessive points in time when all random numbers are lar
than f 0. The lifetime ~also called size@5#! of such an ava-
lanche is defined as the number of time steps between t
points in time. When the lifetime distribution exhibits powe
law behavior, the average lifetime diverges. The aver
avalanche lifetime is a function of the arbitrary paramterf 0.
It has been found@5# that in the thermodynamic limit the
divergence is like (f c2 f 0)2g ~for f 0, f c), whereg is a criti-
cal exponent.

However, for finite systems this fails in the near neig
borhood of f c . This can be understood because larger~on
average! avalanches cover the whole system so that a
lanches that would have lasted much longer in a larger s
tem, are now finished much more quickly. As a conseque
the average avalanche size atf 05 f c does not diverge bu
takes a finite value. Nevertheless, asf 0 tends to 1, the aver-
age diverges. This divergence can be readily calculated
using Eq.~16! from @5#:

d ln^T& f 0

d f0
5

^ncov& f 0

12 f 0
, ~1!

where^ncov& f 0
denotes the average number of cells cove

by f 0 avalanches~i.e., the number of cells that changed the
fitness at least once during the course of the avalanche! and
^T& f 0

is their average size. This equation is valid for a
©2001 The American Physical Society01-1
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models @5# of the Bak-Sneppen type independent of th
dimension and independent of the value off 0. Supposef 0 is
sufficiently large, such that̂T& f 0

is large. Then the ava
lanches cover on average all the cells in the system, i.e.

^ncov& f 0
5Ld. ~2!

Inserting this into Eq.~1! and solving this equation leads t

^T& f 0
;~12 f 0!2Ld

. ~3!

This means that the average avalanche size divergesf 0
51 for every finite system. This divergence is not of t
same interesting dynamical type as that atf c for the infinite
system as can be readily seen. Consider a sufficiently l
time interval such that manyf 0 avalanches occur. Then o
the average at 1 out of^T& f 0

points in time all of the cells

have fitnesses abovef 0. If at every time step new random
numbers were assigned to allLd cells in the system, the
probability for this to happen would be (12 f 0)Ld

. Thus we
have 1/̂T& f 0

5(12 f 0)Ld
, and hence a behavior as in Eq.~3!

aside from the proportionality constant. We interpret this
mean that forf 0 close to 1 only random behavior of th
system survives.

We can summarize the dependence of the average
lanche lifetime onf 0 in the finite Bak-Sneppen model a
follows. For f 0 smaller thenf c the averagêT& f 0

is propor-

tional to (f c2 f 0)2g. For f 0 larger thanf c the dependence i
like (12 f 0)2Ld

. In the near neighborhood off c there is a
transition between these two regimes. In Fig. 1 the result

FIG. 1. Average avalanche size as function of 12 f 0 for differ-
ent system sizes in the one-~open circles and squares! and two-
dimensional~solid squares! Bak-Sneppen model. The dotted an
dashed lines indicate the critical values 12 f c in each case. The

solid lines correspond to;(12 f 0)2Ld
.
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numerical calculations for different system sizes and dim
sions of the Bak-Sneppen model are shown together with
results of Eq.~3!.

It is interesting to consider the average avalanche lifeti
at fixed f 0 ~especially atf c) for different system sizesL,
because the power-law behavior of the lifetime distributio
at f c is restricted by a cutoff due to the finite system siz
Hence, studying the average lifetime atf c as a function ofL
yields information about the dependence of this cutoff on
system size. We find through numerical calculations that

^T& f c
;LE ~4!

with E52.3060.01 for the one-,E52.2660.03 for the
two-, and E52.3160.06 for the three-dimensional Bak
Sneppen model~see Fig. 2!. Within the accuracy of the cal
culation, the value ofE is the same in all three dimension
For the random-neighbor version of this model it was fou
analytically @7# that the average grows withL0.5.

For values off 0 below f c the average tends to a finit
limit, namely, its value atL5`. At f c the full power-law
behavior of Eq.~4! is observed, while for larger values off 0
other functional dependence occurs. Equation~4! can be
readily understood if one assumes that the probability dis
butionPf c

(T) of the avalanche lifetime atf c exhibits power-
law behavior with a cutoff dependent onL:

Pf c
~T!;T2tg~TL1/e!, ~5!

where e is an ~model-dependent! exponent describing the
cutoff, t is the exponent of the power law of the lifetim
distribution, andg(x) is a scaling function, which decay
rapidly whenx is large, and tends to a constant forx→0.
Calculating the average gives

^T& f c
;L (22t)/e, ~6!

FIG. 2. Average avalanche size as function ofL for different f 0

in the one- and two-dimensional Bak-Sneppen model. Only af c

does full power-law behaviorLE occur.
1-2
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which is the observed power-law behavior withE5(2
2t)/e ~see Fig. 2!. t51.07 andt51.245 @5# for the one-
and two-dimensional Bak-Sneppen model, respectively. T
is, e50.40 in one ande50.33 in two dimensions. It is in-
teresting to see that, althought and e depend on the dimen
sion of the model,E5(22t)/e seems not to.

III. EVOLUTION OF THE GAP AT LARGE TIMES
IN FINITE SYSTEMS

With the help of Eq.~3! we are now able to calculate th
long-term behavior of the gap functionG(t) using the gap
equation@5#, which is valid independent of the value of th
gap:

dG~ t !

dt
5

12G~ t !

Ld^T&G(t)

. ~7!

Defining F(t)512G(t) and using Eq.~3! this equation
reads

dF~ t !

dt
52

F~ t !

LdF~ t !2Ld . ~8!

By separating the variables and integrating this equation
follows that

F~ t !512G~ t !;t21/Ld
~9!

for sufficiently larget and for every~finite! L. In Fig. 3 a
comparison with numerical calculations is shown. It can a
be seen~especially for large systems! that before entering
this regime~i.e., before the gap has reachedf c) the behavior
of the gap function is likef c2G(t);t21/(g21) as calculated
in @5,6# from the average lifetime forf 0 avalanches with
f 0, f c by using the gap equation. Atf c the gap function does
not reach a stationary value. From the dynamical point
view it is then no longer meaningful to follow its evolutio
any further. This can be readily understood by recalling t
.
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the finite system sizeL also sets a finite ‘‘system size’’ in
time, and that considering gap values abovef c needs time
scales larger than this.

IV. CONCLUSIONS

We have shown analytically how the average lifetime d
pends onf 0 and how the gap function in the Bak-Snepp
evolution model behaves after long time intervals and co
pared both results successfully to numerical calculations.
observe that the average lifetime atf c is proportional toLE,
whereE is an exponent that is apparently independent of
dimension of the model.
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FIG. 3. The difference of the current gapG(t) from 1 as a
function of timet for different system sizes in the one-dimension
Bak-Sneppen model. The horizontal dotted line indicates 12 f c .

The solid lines represent at1/Ld
dependence as described in the te
T.
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